navananananananananananan

タマゴ感受性腸内常在菌(ESIB)- 分離 ESIB の機能性 -

東京海洋大学学術研究院食品生産科学部門・教授 久田 孝

≤∽~~~~~~~~~~~~~

■ 緒 言

日本では高齢化や食生活の変化により、生活習慣病患者とその予備軍が増加しており、かかる医療費は全体の1/3にも達する。その予防・改善には食生活の改善、適度な運動が重要であるが、機能 性食品の効果も期待されている。健常成人の大腸内には500-1000種の細菌類が、数百兆個も存在し ており、菌体そのものや代謝活動が宿主の健康に影響を及ぼすため、腸内菌叢とその代謝産物を改善 する食品(Probiotics 性)成分の探索が続けられているが¹⁾、食品成分により増加する菌種(感受性腸内 常在菌、Susceptible gut indigenous bacteria=SIB)が、実際に宿主の健康に寄与するのかを明らかにす ることも重要と考えられる。

申請者らは 2018 年度の本助成研究において、タンパク質および脂質源をミルクカゼインおよび牛 脂とした CT 食、あるいは全卵粉末とした Egg 食を ddY マウスに投与し、次世代シーケンサーを用い て盲腸内菌叢を解析した²⁾。その結果、CT 群と比較して、Egg 群で菌数の高い Faecalibaculum sp. を E-SIB と特定した。さらに BL 寒天培地を用いた E-SIB の分離に成功し、分離株は F. rodentium と同定 された。本研究においては、昨年度に続き、卵黄および卵白に対する SIB の特定と分離を試みた。

■ 方 法

油脂およびタンパク試料

牛脂(Beef tallow)はおよびミルクカゼインは富士フイルム和光純薬より、卵黄粉末はペッズイシバ シより、卵白粉末はキユーピータマゴより購入した。

動物実験1:卵黄投与マウス

動物実験は文部科学省「研究機関等における動物実験等の実施に関する基本指針」を遵守し、東京 海洋大学動物実験委員会による承認(H31-5)を受けて行った。5週齢雄性 ddY マウス 16 匹を東京実 験動物(株)より購入し、Table 1 に示す MC 食(20%ミルクカゼイン、5%コーン油)で7日間予備飼 育した。無作為に2群に分け、20%ミルクカゼインおよび 17%牛脂を含む CT 食、あるいは 12%ミ ルクカゼインおよび 27%卵黄粉末を含む EY 食で 14 日間飼育した。飼育終了後、イソフルラン吸気 麻酔下で放血致死後、盲腸を摘出し、無菌的に内容物を取り出し、速やかに分離に供し、残りを菌叢 解析のために -80℃で凍結保存した。

動物実験2:卵白投与マウス

5 週齢雄性 ICR マウス 12 匹を、上記と同様に MC 食で 7 日間予備飼育後、無作為に 2 群に分け、 MC 食あるいは MC 食の 20% ミルクカゼインを卵白と置き換えた EW 食で 14 日間飼育した。飼育終 了後、上記と同様に盲腸内容物を取り出し、実験に用いた。

総菌数および分離

盲腸内容物を無菌的にリン酸緩衝生理的食塩水(PBS)で100 倍希釈し、細菌カウンタ(PHC)を用いた誘電泳動インピーダンス計測法(DEPIM)³⁾で総菌数を測定した。さらに、0.1%寒天加 PBS を用いて段階希釈し、10⁵~10⁻⁷ 希釈液 0.03mL を Blood Liver(BL)寒天培地(ニッスイ製薬)に塗抹し、37℃で48h 嫌気培養後、特徴的なコロニーについて、同培地を用いて純粋分離した。分離菌は常法どおり16S rDNA の BLASTn 検索により同定した。

盲腸内菌叢

既報⁴のとおり、(株)ファスマックに委託し、盲腸内容物の全ゲノムを抽出後、16S rDNA(V4)領域 のアンプリコンを、llumina 社 MiSeq システムを用いてシーケンスした。解析ソフト QIIME2、データ ベース SILVA を用いて、約 250 塩基の 97%相同の operational taxonomic unit(OTU)を得た。 分離 SIB の免疫活性化作用および腸管上皮細胞保護作用

昨年度および上記の実験で分離、同定された各 SIB の菌体について、マクロファージ様 RAW264.7 細胞の NO 産生促進を指標に免疫活性化作用を検討した⁵⁾。また、過酸化水素のヒト腸管上皮様 HT-29 Luc 細胞への毒性に対する保護作用についても検討した⁵⁾。

■ 結 果

動物実験1:卵黄投与マウス

・総菌数および α-多様性

飼育期間中のマウスに異常は認められず、体重増加量に有意差はなかった。総菌数は 11 log cells/ g レベルで、EY 群で低い傾向であった。アンプリコンシーケンスの総リード数は EY 群で有意に低 く(Table 2)、EY 群の OTU 数は CT の 2/3 程であった。個体ごとの菌叢の多様性(α -多様性)を示す Shannon-Wiener *H*'も EY 群で低かった。

・盲腸内菌叢

個体ごとの OTU の主座標分析 (PCoA) では、両群間で明確に異なる菌叢構成を持つことが示さ れた (Fig. 1)。菌叢解析の結果は占有率で示すことが多いが、本実験では上記のように総菌数と 相関しているため、リード数で示した (Fig. 2)。門レベルの優勢菌は Firmicutes、Bacteroidetes、 Actinobacteria および Proteobacteria で、EY 群で Firmicutes が低かった (Fig. 2A)。CT 群の Firmicutes 門のうち、属レベルの優勢菌は Facalibaclum、Lachnospiraceae g、Lactobacillus、Ruminococcaceae g および Clostrisium sensu-stricto 1 であった (Fig. 2B)。これらのうち Lachnospiraceae g および Ruminococcaceae g は EY 群で顕著に低く、一方で Allobaculum が優勢であった。

・EY-SIB の特定と分離

優勢な 50 OTU のうち、両群間で有意差の認められたものの BLASTn の結果を Table 3 にまとめた。 EY 群で *Allobaculum stercoricianis*-、*Lactobacillus murinus*-、および *Bacteroides vulgates*- 類縁菌が優勢 で、これらを卵黄に感受性を持ち増加する EY-SIB と推定した。これらの EY-SIB にうち、*B. vulgatus* (Yolk-2, -3、Accession No LC506518; LC506528)、および *L. murinus*(Yolk-5, -10、LC506521; LC506526)の2種が分離された。

動物実験2:卵白投与マウス

・総菌数およびα-多様性

本実験でも、飼育期間中の異常、体重増加量の差は認められなかった。MC 群と比較して、EW 群で 総菌数は約 2/3 で、総リード数も約 2/3、OTU 数は 1/2 以下であった (Table 4)。Shannon-Wiener H' は EW 群で低かった。

・盲腸内菌叢

PCoA で、両群間で明確に異なる菌叢構成を持つことが示された(Fig. 3)。門レベルのリード 数では、上記の実験と同様に、Firmisutes が最優勢で、続いて Bacteroidetes、Proteobacteria が 優勢であったが、Actinobacteria は低い占有率であった(Fig. 4A)。MC 群と比較して、EW 群で Proteobacteria、Actinobacteria および Deferibacters が有意に低かった。Firumicutes のうち属レベルで は *Eryspelotrichiacea* g、*Lachnocpiraceae* g、および *Blautia* が MC 群で高く、[*Clostridium*] *innocuum* お よび[*Eubacterium*]*brachy* が EW 群で高かった(Fig. 4B)。また、*Lactobacillus* も EW 群で高い傾向で あった。Deferribacters および Proteobacteria のほとんどは *Desulfovibriinaceae* g および *Municspirillum* であった。Bacteroidetes のうち優勢な属は *Bacteroides*、EW 群で *Parabacteroides*、*Rikenellaceae* RC9 gut group、および *Alloprevotella* が高い値であった。

・EW-SIB の特定と分離

上記の実験と同様に、両群間で有意差の認められた OTU の BLASTn の結果を Table 5 に示す。EW 群で Blautia coccoides-、Parabacteroides goldsteinii-、[Clostridium] innocuum-、Enterococcus facium/ avium-、および Desulfovibris desulfuricans-類縁菌が有意に高い値を示し、これらを卵白に感受性を 持ち増加する EW-SIB と推定した。これらの EW-SIB にうち、E. avium (PS1、LC488234) および E. faecium (PS7、LC488240)の 2 種が分離された。

・分離 SIB の免疫活性化および腸管上皮細胞保護作用

本研究での分離菌および、昨年度全卵食で優勢となった Faecalibaculum rodentium Egg-1 (LC416469)の計6株について検討したところ、全ての分離株でマクロファージ活性化(NO 産生促進) を示した。また、腸管上皮細胞保護作用は F. rodentium Egg-1 で明確に認められた(Fig. 5)。

■ 考 察

α-多様性の増加は野菜、食物繊維等の摂取との相関が報告されており、健康機能性にも関わること が報告されているが、発酵性多糖類や probiotics の投与でも低くなる場合がある⁶⁾。昨年度助成研究 では CT 食と全卵 (WE) 食ではこれらの違いは認められなかったが²⁾、今回の結果は卵黄および卵白の 摂取により特定の菌種が抑制されたことを示唆している。Firmicutes を含むグラム陽性菌に対する卵 白中のリゾチームの抗菌活性はよく知られているが⁷⁾、卵黄のリポタンパクやホスホペプチドなどの *Staphylococcus*, *Streptococcus*, *Enterococcus* や *Listeria* に対する抗菌性も報告されている^{8,9}。

A. stercoricanis と *L. murinus* は昨年度の研究でも WE-SIB として特定された菌種であるが、典型的な WE-SIB であった *F. rodentium* は²⁾、今回の EY あるいは EW 群では認められなかった。*Allobaculum* は、実験動物の一般的な腸内細菌であるが、その宿主に対する影響はまだ不明な点が多い¹⁰⁾。*L. murinus、E. faecalis* については probiotics 性、例えば、その腸炎抑制などの報告が多い¹¹⁾。*B. vulgatus* はヒトの腸内常在菌でもあり、免疫調節機能も報告されている¹²⁾。

本研究では、これらの卵黄および卵白に対する SIB の特定と、その一部の SIB の分離に成功し、分離 SIB が免疫活性化作用と腸管上皮保護作用を持つことが認められた。今回、分離できなかった SIB、 また、タマゴ成分との組み合わせによる機能性などは、今後の検討が必要である。また、ヒトのタマ ゴ成分に対する SIB について、その存在の確認と分離についても検討する必要がある。

■ 要約

本研究では、昨年度の全卵に続き、卵黄および卵白に対する腸内常在の感受性菌(SIB)の特定と分離を試みた。脂質、タンパク源を牛脂、ミルクカゼインとした CT 食マウスと比較して、卵黄(EY)食マウスでは、盲腸内の A. stercoricianis-、L. murinus-、および B. vulgates-類縁菌が優勢で、これらを EY-SIB と推定した。また、タンパク源をミルクカゼインとした MC 食マウスと比較して、卵白(EW) 食マウスでは、B. coccoides-、P. goldsteinii-、[Clostridium] innocuum-、E. facium/avium-、および D. desulfuricans-類縁菌が有意に高い値を示し、これらを EW-SIB と推定した。これらの SIB のうち、L, murinus、B. vulgatus、E. facium および E. avium の分離に成功した。これらの SIB は全卵(WE)食の SIB として分離された F. rodentium とともに、in vitro におけるマクロファージ活性化および腸管上皮 細胞保護作用が認められた。今後さらに、分離 SIB の機能性と、ヒト SIB の特定と分離が望まれる。

本研究の遂行にあたり、多大なご援助を賜りました公益財団法人 旗影会に厚く御礼申し上げます。

■ 文 献

- 1) NIH Human Microbiome Portfolio Analysis Team (2019). A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years2007–2016, Microbiome 7, 31.
- 2) Fukunaga M., et al. (2019). Typical indigenous bacteria in the cecum of ddY mice fed a casein-beef tallow diet or whole-egg diet. J. Food Biochem 43, e13064.
- 3) Hirota K., et al. (2014). Evaluation of a rapid oral bacteria quantification system using dielectrophoresis and the impedance measurement. Biocontrol Sci 19, 45–49.
- 4) Xia Y., et al. (2019). Detection and isolation of bacteria affected by dietary cumin, coriander, turmeric, and red chili pepper in the caecum of ICR mice. J Funct Foods 61, 103467.
- Yokota Y, et al. (2018). *Lactobacillus plantarum* AN1 cells increase caecal *L. reuteri* in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int Immunopharm 56, 119– 27.
- 6) Menni C, et al. (2017). Gut microbiome diversity and high-fibre intake are related to lower long term weight gain. Int J Obes 41, 1099–105.
- 7) Ibraham HR, et al.(1996). A structural phase of heat-denatured lysozyme with novel antimicrobial action. J Agri Food Chem 44, 1416–23.
- 8) Brady D, et al. (2002). A lipoprotein-derived antimicrobial factor from hen-egg yolk is active against Streptococcus species. J Food Sci 67, 3096–103.
- 9) Samaraweera H., et al.(2011). Egg yolk phosvitin and functional phosphopeptides. J Food Sci 76, R143-50.
- 10) Shikano A., et al. (2019). Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on

plasma lipid levels and gut microbiome of high-fat diet fed mice. Food Res Int 121, 817-24.

- 11) Isanim M, et al. (2018). *Lactobacillus murinus* HF12 colonizes neonatal gut and protects rats from necrotizing enterocolitis. PLoS ONE 13, e0196710.
- 12) Cuív PÓ, et al. (2017). The gut bacterium and pathobiont Bacteroides vulgatus activates NF- κ B in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe 47, 209–17.

	MC	СТ	EY	EW
Milk casein	20	20.0	11.8	
Egg white				20
Corn oil	5.0			5.0
Beef tallow		17.0		
Egg-yolk powder			27.0	
DL-Methionine	0.3	0.3	0.3	0.3
Corn starch	15.0	15.0	15.0	15.0
Sucrose	50.0	38.0	37.1	50.0
Cellulose	5.0	5.0	5.0	5.0
Vitamin mix (AIN-76*)	1.0	1.0	1.0	1.0
Mineralmix (AIN-76*)	3.5	3.5	2.6	3.5
Cholinebitartrate	0.2	0.2	0.2	0.2
Protein		19.0	18.4**	
Lipid		16.4	17.4**	
Carbohydrate		59.4	56.4**	
Energy (kCal/100g diet)		441	442	

Table 1

Conposition of test diets (g/100g).

* The American Institute of Nutrition.

** Accoroding to the 'StandardTable of Food Composition in Japan'.

Table 2

Caecal bacterial cell counts, the read numbers of bacterial genes by the NGS, and their α -diversity in caecal contents of mice CT or EY diets.

	СТ	EY
Total cell counts (Log cells/g) ^a	11.25 ± 0.09	11.08 ± 0.05
NGS analysis Number of reads Number of OTU Shannon-Wiener <i>H'</i> Simpson's index <i>D</i>	90357 ± 3792 192 ± 11 3.510 ± 0.189 0.897 ± 0.022	73799 ± 2731** 128 ± 9** 2.948 ± 0.141* 0.877 ± 0.016

^a Counted with dielectrophoretic impedance measurement (DEPIM) method. Values are the mean and SEM (n=8). (* p<0.05,**p<0.01).

Table 3

Read numbers of the dominant OTUs in the caecal microbiome of mice fed a CT or EY diet.

Taxonomy	СТ	EY	BLAST search (similarly %)
Desulfovibrio	645 ± 131**	88 ± 32	Desulfovibrio desulfuricans (96)
<i>Turicibacter</i> ;uncultured	779 ± 224**	70 ± 43	Turicibacter sanguinis (98)
Allobaculum_sp.	581 ± 380	13767 ± 2636**	Allobaculum stercoricanis (92)
Ruminococcaceae	588 ± 115*	200 ± 78	Pseudoflavonifractor sp. (97)
Ruminiclostridium ;uncultured	611 ± 113**	31 ± 16	Oscillibacter sp. (100)
[Eubacterium]_coprostanoligenes	0 ± 0	1153 ± 307**	Ruminococcus sp. (89)
Lachnospiraceae	780 ± 205**	107 ± 69	Lachnospiraceae sp. (91)
Lachnospiraceae	570 ± 146**	68 ± 46	<i>Eisenbergiella</i> sp. (100)
Lachnospiraceae	573 ± 201*	15 ± 10	[Clostridium] aldenense (98)
Lachnospiraceae _NK4A136	2508 ± 948*	16 ± 16	<i>Lachnospiraceae</i> sp. (97)
Acetatifactor ;uncultured	731 ± 279*	0 ± 0	Acetatifactor muris (95)
Lactobacillus	1319 ± 506	4148 ± 1086*	Lactobacillus murinus (100)
Helicobacter_spMIT_075165	1006 ± 159**	329 ± 135	Helicobacter japonicus (100)
Muribaculaceae	477 ± 76*	178 ± 72	<i>Muribaculum</i> sp. (90)
Bacteroides	280 ± 94	1898 ± 651*	Bacteroides vulgatus (100)
Bacteroides	96 ± 45	807 ± 269*	Bacteroides vulgatus (100)

Values are the mean and SEM (n = 8). Asterisks indicate a value that is significantly higher than that in the other group (*p<0.05. ** p<0.01).

Table 4

	MC	EW
Total bacterial count (Log cells/g	11.27 ± 0.04	11.06 ± 0.07*
Total read number Number of OTUs Shannon index (H') Simpson's index D	$75568 \pm 6600 \\ 144 \pm 6 \\ 3.184 \pm 0.138 \\ 0.908 \pm 0.017$	49570 ± 3325** 66 ± 3** 2.785 ± 0.169* 0.852 ± 0.048

Total bacterial count, alpha diversity indices in caecal microbiome of tested mice.

Values are mean and SEM (n = 6).

*,**Significantly different at p < 0.05 and p < 0.01.

Table 5

Read numbers of the dominant OTUs in the caecal microbiome of mice fed a MC or EW diet.

Taxonomy	MC	EW	BLAST search (similarly %)
Desulfovibrionaceae Desulfovibrio	6459 ± 1102** 0 ± 0	316 ± 91 1687 ± 875**	Desulfovibrionaceae sp. (91) Desulfovibrio desulfuricans (96)
[Clostridium]_innocuum Turicibacter Ruminococcaceae [Eubacterium]_coprostanoligenes Lachnospiraceae Lachnospiraceae;A2 Blautia Blautia Clostridium_sensu_stricto_1 Clostridium_sensu_stricto_1 Enterococcus Muribaculaceae	7 ± 7 $6859 \pm 3563^{**}$ $1694 \pm 472^{**}$ $1910 \pm 410^{**}$ $1099 \pm 259^{**}$ $4671 \pm 1591^{**}$ $4401 \pm 1416^{**}$ $3783 \pm 1159^{**}$ 5 ± 3 $8536 \pm 4608^{**}$ $2372 \pm 1279^{**}$ $0 \qquad 0$ 114 ± 39	$2646 \pm 1050^{**}$ 5 ± 2 54 ± 48 0 ± 0 0 ± 0 0 ± 0 0 ± 0 49 ± 25 3392 ± 819^{**} 1 ± 1 0 ± 0 2066 ± 1259^{**} 1041 ± 313^*	[Clostridium] innocuum (100) Turicibacter sanguinis (98) Pseudoflavonifractor capillosus (96) Eubacterium coprostanoligenes (94) Lachnospiraceae sp. (100) Lachnospiraceae sp. (98) Eisenbergiella sp. (100) Eisenbergiella sp. (100) Blautia coccoides(100) Clostridium disporicum (99) Clostridium disporicum (98) Enterococcus faecium/avium (100) Muribaculum intestinale (90)
Manbacalaceae Muribaculaceae Parabacteroides_goldsteinii Mucispirillum_schaedleri Bacteroides	100 ± 31 79 ± 28 4040 ± 1056** 2215 ± 773	537 ± 152* 2923 ± 1194* 434 ± 71 264 ± 146*	Muribaculum intestinale (90) Parabacteroides goldsteinii 100) Mucispirillum schaedleri (100) Bacteroides acidifaciens (100)

Values are the mean and SEM (n = 6). Asterisks indicate a value that is significantly higher than that in the other groups (*p <0.05, **p < 0.01).

Fig. 1. Principal coordinate analysis (PCoA) of the operational taxonomic units (OTUs) in the caecal microbiome of mice fed a high-sucrose diet containing either 20% (w/w) milk casein and 17% beef tallow (CT) or 12% milk casein and 27% egg yolk (EY).

Fig. 2. Composition of the caecal microbiome at the phylum (A) and genus (B) levels in mice fed a highsucrose diet containing either 20% (w/w) milk casein and 17% beef tallow (CT) or 12% milk casein and 27% egg yolk (EY). Asterisks beside the columns indicate higher values compared to those of the other diet group (*p< 0.05, **p<0.01).

Fig. 3. Principal coordinate analysis (PCoA) of the operational taxonomic units (OTUs) in the caecal microbiome of mice fed a high-sucrose diet containing either 20% (w/w) milk casein (MC) or 20% egg white (EW).

Fig. 4. Composition of the caecal microbiome at the phylum (A) and genus (B) levels in mice fed a high-sucrose diet containing either 20% (w/w) milk casein (MC) or egg white (EW). Asterisks beside the columns indicate higher values compared to those of the other diet group (*p<0.05, **p<0.01).

Fig. 5. NO secretion of RAW264.7 cells with F. *rodentium* Egg-1 sterilized cells (A) and survival ratio of HT-29 cells with 1 mmol/L H2O2 and the isolated SIB cells (B) Values are mean and SEM (n=3).